47 lines
1.7 KiB
Python
47 lines
1.7 KiB
Python
import torch
|
||
import torch.nn as nn
|
||
from torchvision import models
|
||
|
||
class RoRD(nn.Module):
|
||
def __init__(self):
|
||
super(RoRD, self).__init__()
|
||
# 检测骨干网络:VGG-16 直到 relu5_3(层 0 到 29)
|
||
self.backbone_det = models.vgg16(pretrained=True).features[:30]
|
||
# 描述骨干网络:VGG-16 直到 relu4_3(层 0 到 22)
|
||
self.backbone_desc = models.vgg16(pretrained=True).features[:23]
|
||
|
||
# 检测头:输出关键点概率图
|
||
self.detection_head = nn.Sequential(
|
||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(256, 1, kernel_size=1),
|
||
nn.Sigmoid()
|
||
)
|
||
|
||
# 普通描述子头(D2-Net 风格)
|
||
self.descriptor_head_vanilla = nn.Sequential(
|
||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(256, 128, kernel_size=1),
|
||
nn.InstanceNorm2d(128)
|
||
)
|
||
|
||
# RoRD 描述子头(旋转鲁棒)
|
||
self.descriptor_head_rord = nn.Sequential(
|
||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(256, 128, kernel_size=1),
|
||
nn.InstanceNorm2d(128)
|
||
)
|
||
|
||
def forward(self, x):
|
||
# 检测分支
|
||
features_det = self.backbone_det(x)
|
||
detection = self.detection_head(features_det)
|
||
|
||
# 描述分支
|
||
features_desc = self.backbone_desc(x)
|
||
desc_vanilla = self.descriptor_head_vanilla(features_desc)
|
||
desc_rord = self.descriptor_head_rord(features_desc)
|
||
|
||
return detection, desc_vanilla, desc_rord |