49 lines
1.6 KiB
Python
49 lines
1.6 KiB
Python
# models/rord.py
|
||
|
||
import torch
|
||
import torch.nn as nn
|
||
from torchvision import models
|
||
|
||
class RoRD(nn.Module):
|
||
def __init__(self):
|
||
"""
|
||
修复后的 RoRD 模型。
|
||
- 实现了共享骨干网络,以提高计算效率和减少内存占用。
|
||
- 确保检测头和描述子头使用相同尺寸的特征图。
|
||
"""
|
||
super(RoRD, self).__init__()
|
||
|
||
vgg16_features = models.vgg16(pretrained=False).features
|
||
|
||
# 共享骨干网络 - 只使用到 relu4_3,确保特征图尺寸一致
|
||
self.backbone = nn.Sequential(*list(vgg16_features.children())[:23])
|
||
|
||
# 检测头
|
||
self.detection_head = nn.Sequential(
|
||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(256, 128, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(128, 1, kernel_size=1),
|
||
nn.Sigmoid()
|
||
)
|
||
|
||
# 描述子头
|
||
self.descriptor_head = nn.Sequential(
|
||
nn.Conv2d(512, 256, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(256, 128, kernel_size=3, padding=1),
|
||
nn.ReLU(inplace=True),
|
||
nn.Conv2d(128, 128, kernel_size=1),
|
||
nn.InstanceNorm2d(128)
|
||
)
|
||
|
||
def forward(self, x):
|
||
# 共享特征提取
|
||
features = self.backbone(x)
|
||
|
||
# 检测器和描述子使用相同的特征图
|
||
detection_map = self.detection_head(features)
|
||
descriptors = self.descriptor_head(features)
|
||
|
||
return detection_map, descriptors |