149 lines
5.7 KiB
Python
149 lines
5.7 KiB
Python
import os
|
||
import json
|
||
from typing import Tuple
|
||
|
||
import cv2
|
||
import numpy as np
|
||
import torch
|
||
from PIL import Image
|
||
from torch.utils.data import Dataset
|
||
|
||
class ICLayoutDataset(Dataset):
|
||
def __init__(self, image_dir, annotation_dir=None, transform=None):
|
||
"""
|
||
初始化 IC 版图数据集。
|
||
|
||
参数:
|
||
image_dir (str): 存储 PNG 格式 IC 版图图像的目录路径。
|
||
annotation_dir (str, optional): 存储 JSON 格式注释文件的目录路径。
|
||
transform (callable, optional): 应用于图像的可选变换(如 Sobel 边缘检测)。
|
||
"""
|
||
self.image_dir = image_dir
|
||
self.annotation_dir = annotation_dir
|
||
self.transform = transform
|
||
self.images = [f for f in os.listdir(image_dir) if f.endswith('.png')]
|
||
if annotation_dir:
|
||
self.annotations = [f.replace('.png', '.json') for f in self.images]
|
||
else:
|
||
self.annotations = [None] * len(self.images)
|
||
|
||
def __len__(self):
|
||
"""
|
||
返回数据集中的图像数量。
|
||
|
||
返回:
|
||
int: 数据集大小。
|
||
"""
|
||
return len(self.images)
|
||
|
||
def __getitem__(self, idx):
|
||
"""
|
||
获取指定索引的图像和注释。
|
||
|
||
参数:
|
||
idx (int): 图像索引。
|
||
|
||
返回:
|
||
tuple: (image, annotation),image 为处理后的图像,annotation 为注释字典或空字典。
|
||
"""
|
||
img_path = os.path.join(self.image_dir, self.images[idx])
|
||
image = Image.open(img_path).convert('L') # 转换为灰度图
|
||
if self.transform:
|
||
image = self.transform(image)
|
||
|
||
annotation = {}
|
||
if self.annotation_dir and self.annotations[idx]:
|
||
ann_path = os.path.join(self.annotation_dir, self.annotations[idx])
|
||
if os.path.exists(ann_path):
|
||
with open(ann_path, 'r') as f:
|
||
annotation = json.load(f)
|
||
|
||
return image, annotation
|
||
|
||
|
||
class ICLayoutTrainingDataset(Dataset):
|
||
"""自监督训练用的 IC 版图数据集,带数据增强与几何配准标签。"""
|
||
|
||
def __init__(
|
||
self,
|
||
image_dir: str,
|
||
patch_size: int = 256,
|
||
transform=None,
|
||
scale_range: Tuple[float, float] = (1.0, 1.0),
|
||
) -> None:
|
||
self.image_dir = image_dir
|
||
self.image_paths = [
|
||
os.path.join(image_dir, f)
|
||
for f in os.listdir(image_dir)
|
||
if f.endswith('.png')
|
||
]
|
||
self.patch_size = patch_size
|
||
self.transform = transform
|
||
self.scale_range = scale_range
|
||
|
||
def __len__(self) -> int:
|
||
return len(self.image_paths)
|
||
|
||
def __getitem__(self, index: int):
|
||
img_path = self.image_paths[index]
|
||
image = Image.open(img_path).convert('L')
|
||
width, height = image.size
|
||
|
||
# 随机尺度抖动
|
||
scale = float(np.random.uniform(self.scale_range[0], self.scale_range[1]))
|
||
crop_size = int(self.patch_size / max(scale, 1e-6))
|
||
crop_size = min(crop_size, width, height)
|
||
|
||
if crop_size <= 0:
|
||
raise ValueError("crop_size must be positive; check scale_range configuration")
|
||
|
||
x = np.random.randint(0, max(width - crop_size + 1, 1))
|
||
y = np.random.randint(0, max(height - crop_size + 1, 1))
|
||
patch = image.crop((x, y, x + crop_size, y + crop_size))
|
||
patch = patch.resize((self.patch_size, self.patch_size), Image.Resampling.LANCZOS)
|
||
|
||
# 亮度/对比度增强
|
||
if np.random.random() < 0.5:
|
||
brightness_factor = np.random.uniform(0.8, 1.2)
|
||
patch = patch.point(lambda px: int(np.clip(px * brightness_factor, 0, 255)))
|
||
|
||
if np.random.random() < 0.5:
|
||
contrast_factor = np.random.uniform(0.8, 1.2)
|
||
patch = patch.point(lambda px: int(np.clip(((px - 128) * contrast_factor) + 128, 0, 255)))
|
||
|
||
if np.random.random() < 0.3:
|
||
patch_np = np.array(patch, dtype=np.float32)
|
||
noise = np.random.normal(0, 5, patch_np.shape)
|
||
patch_np = np.clip(patch_np + noise, 0, 255)
|
||
patch = Image.fromarray(patch_np.astype(np.uint8))
|
||
|
||
patch_np_uint8 = np.array(patch)
|
||
|
||
# 随机旋转与镜像(8个离散变换)
|
||
theta_deg = int(np.random.choice([0, 90, 180, 270]))
|
||
is_mirrored = bool(np.random.choice([True, False]))
|
||
center_x, center_y = self.patch_size / 2.0, self.patch_size / 2.0
|
||
rotation_matrix = cv2.getRotationMatrix2D((center_x, center_y), theta_deg, 1.0)
|
||
|
||
if is_mirrored:
|
||
translate_to_origin = np.array([[1, 0, -center_x], [0, 1, -center_y], [0, 0, 1]])
|
||
mirror = np.array([[-1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
||
translate_back = np.array([[1, 0, center_x], [0, 1, center_y], [0, 0, 1]])
|
||
mirror_matrix = translate_back @ mirror @ translate_to_origin
|
||
rotation_matrix_h = np.vstack([rotation_matrix, [0, 0, 1]])
|
||
homography = (rotation_matrix_h @ mirror_matrix).astype(np.float32)
|
||
else:
|
||
homography = np.vstack([rotation_matrix, [0, 0, 1]]).astype(np.float32)
|
||
|
||
transformed_patch_np = cv2.warpPerspective(patch_np_uint8, homography, (self.patch_size, self.patch_size))
|
||
transformed_patch = Image.fromarray(transformed_patch_np)
|
||
|
||
if self.transform:
|
||
patch_tensor = self.transform(patch)
|
||
transformed_tensor = self.transform(transformed_patch)
|
||
else:
|
||
patch_tensor = torch.from_numpy(np.array(patch)).float().unsqueeze(0) / 255.0
|
||
transformed_tensor = torch.from_numpy(np.array(transformed_patch)).float().unsqueeze(0) / 255.0
|
||
|
||
H_tensor = torch.from_numpy(homography[:2, :]).float()
|
||
return patch_tensor, transformed_tensor, H_tensor |