192 lines
7.8 KiB
Python
192 lines
7.8 KiB
Python
# evaluate.py
|
||
|
||
import argparse
|
||
import json
|
||
import os
|
||
from pathlib import Path
|
||
|
||
import torch
|
||
from PIL import Image
|
||
from torch.utils.tensorboard import SummaryWriter
|
||
|
||
from match import match_template_multiscale
|
||
from models.rord import RoRD
|
||
from utils.config_loader import load_config, to_absolute_path
|
||
from utils.data_utils import get_transform
|
||
|
||
def compute_iou(box1, box2):
|
||
x1, y1, w1, h1 = box1['x'], box1['y'], box1['width'], box1['height']
|
||
x2, y2, w2, h2 = box2['x'], box2['y'], box2['width'], box2['height']
|
||
inter_x1, inter_y1 = max(x1, x2), max(y1, y2)
|
||
inter_x2, inter_y2 = min(x1 + w1, x2 + w2), min(y1 + h1, y2 + h2)
|
||
inter_area = max(0, inter_x2 - inter_x1) * max(0, inter_y2 - inter_y1)
|
||
union_area = w1 * h1 + w2 * h2 - inter_area
|
||
return inter_area / union_area if union_area > 0 else 0
|
||
|
||
# --- (已修改) 评估函数 ---
|
||
def evaluate(
|
||
model,
|
||
val_dataset_dir,
|
||
val_annotations_dir,
|
||
template_dir,
|
||
matching_cfg,
|
||
iou_threshold,
|
||
summary_writer: SummaryWriter | None = None,
|
||
global_step: int = 0,
|
||
):
|
||
model.eval()
|
||
all_tp, all_fp, all_fn = 0, 0, 0
|
||
|
||
# 只需要一个统一的 transform 给匹配函数内部使用
|
||
transform = get_transform()
|
||
|
||
template_paths = [os.path.join(template_dir, f) for f in os.listdir(template_dir) if f.endswith('.png')]
|
||
layout_image_names = [f for f in os.listdir(val_dataset_dir) if f.endswith('.png')]
|
||
|
||
if summary_writer:
|
||
summary_writer.add_text(
|
||
"dataset/info",
|
||
f"layouts={len(layout_image_names)}, templates={len(template_paths)}",
|
||
global_step,
|
||
)
|
||
|
||
# (已修改) 循环遍历验证集中的每个版图文件
|
||
for layout_name in layout_image_names:
|
||
print(f"\n正在评估版图: {layout_name}")
|
||
layout_path = os.path.join(val_dataset_dir, layout_name)
|
||
annotation_path = os.path.join(val_annotations_dir, layout_name.replace('.png', '.json'))
|
||
|
||
# 加载原始PIL图像,以支持滑动窗口
|
||
layout_image = Image.open(layout_path).convert('L')
|
||
|
||
# 加载标注信息
|
||
if not os.path.exists(annotation_path):
|
||
continue
|
||
with open(annotation_path, 'r') as f:
|
||
annotation = json.load(f)
|
||
|
||
# 按模板对真实标注进行分组
|
||
gt_by_template = {os.path.basename(box['template']): [] for box in annotation.get('boxes', [])}
|
||
for box in annotation.get('boxes', []):
|
||
gt_by_template[os.path.basename(box['template'])].append(box)
|
||
|
||
# 遍历每个模板,在当前版图上进行匹配
|
||
for template_path in template_paths:
|
||
template_name = os.path.basename(template_path)
|
||
template_image = Image.open(template_path).convert('L')
|
||
|
||
# (已修改) 调用新的多尺度匹配函数
|
||
detected = match_template_multiscale(model, layout_image, template_image, transform, matching_cfg)
|
||
|
||
gt_boxes = gt_by_template.get(template_name, [])
|
||
|
||
# 计算 TP, FP, FN (这部分逻辑不变)
|
||
matched_gt = [False] * len(gt_boxes)
|
||
tp = 0
|
||
if len(detected) > 0:
|
||
for det_box in detected:
|
||
best_iou = 0
|
||
best_gt_idx = -1
|
||
for i, gt_box in enumerate(gt_boxes):
|
||
if matched_gt[i]: continue
|
||
iou = compute_iou(det_box, gt_box)
|
||
if iou > best_iou:
|
||
best_iou, best_gt_idx = iou, i
|
||
|
||
if best_iou > iou_threshold:
|
||
if not matched_gt[best_gt_idx]:
|
||
tp += 1
|
||
matched_gt[best_gt_idx] = True
|
||
|
||
fp = len(detected) - tp
|
||
fn = len(gt_boxes) - tp
|
||
|
||
all_tp += tp
|
||
all_fp += fp
|
||
all_fn += fn
|
||
|
||
# 计算最终指标
|
||
precision = all_tp / (all_tp + all_fp) if (all_tp + all_fp) > 0 else 0
|
||
recall = all_tp / (all_tp + all_fn) if (all_tp + all_fn) > 0 else 0
|
||
f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0
|
||
|
||
if summary_writer:
|
||
summary_writer.add_scalar("metrics/precision", precision, global_step)
|
||
summary_writer.add_scalar("metrics/recall", recall, global_step)
|
||
summary_writer.add_scalar("metrics/f1", f1, global_step)
|
||
summary_writer.add_scalar("counts/true_positive", all_tp, global_step)
|
||
summary_writer.add_scalar("counts/false_positive", all_fp, global_step)
|
||
summary_writer.add_scalar("counts/false_negative", all_fn, global_step)
|
||
|
||
return {'precision': precision, 'recall': recall, 'f1': f1}
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description="评估 RoRD 模型性能")
|
||
parser.add_argument('--config', type=str, default="configs/base_config.yaml", help="YAML 配置文件路径")
|
||
parser.add_argument('--model_path', type=str, default=None, help="模型权重路径,若未提供则使用配置文件中的路径")
|
||
parser.add_argument('--val_dir', type=str, default=None, help="验证图像目录,若未提供则使用配置文件中的路径")
|
||
parser.add_argument('--annotations_dir', type=str, default=None, help="验证标注目录,若未提供则使用配置文件中的路径")
|
||
parser.add_argument('--templates_dir', type=str, default=None, help="模板目录,若未提供则使用配置文件中的路径")
|
||
parser.add_argument('--log_dir', type=str, default=None, help="TensorBoard 日志根目录,覆盖配置文件设置")
|
||
parser.add_argument('--experiment_name', type=str, default=None, help="TensorBoard 实验名称,覆盖配置文件设置")
|
||
parser.add_argument('--disable_tensorboard', action='store_true', help="禁用 TensorBoard 记录")
|
||
args = parser.parse_args()
|
||
|
||
cfg = load_config(args.config)
|
||
config_dir = Path(args.config).resolve().parent
|
||
paths_cfg = cfg.paths
|
||
matching_cfg = cfg.matching
|
||
eval_cfg = cfg.evaluation
|
||
logging_cfg = cfg.get("logging", None)
|
||
|
||
model_path = args.model_path or str(to_absolute_path(paths_cfg.model_path, config_dir))
|
||
val_dir = args.val_dir or str(to_absolute_path(paths_cfg.val_img_dir, config_dir))
|
||
annotations_dir = args.annotations_dir or str(to_absolute_path(paths_cfg.val_ann_dir, config_dir))
|
||
templates_dir = args.templates_dir or str(to_absolute_path(paths_cfg.template_dir, config_dir))
|
||
iou_threshold = float(eval_cfg.iou_threshold)
|
||
|
||
use_tensorboard = False
|
||
log_dir = None
|
||
experiment_name = None
|
||
if logging_cfg is not None:
|
||
use_tensorboard = bool(logging_cfg.get("use_tensorboard", False))
|
||
log_dir = logging_cfg.get("log_dir", "runs")
|
||
experiment_name = logging_cfg.get("experiment_name", "default")
|
||
|
||
if args.disable_tensorboard:
|
||
use_tensorboard = False
|
||
if args.log_dir is not None:
|
||
log_dir = args.log_dir
|
||
if args.experiment_name is not None:
|
||
experiment_name = args.experiment_name
|
||
|
||
writer = None
|
||
if use_tensorboard and log_dir:
|
||
log_root = Path(log_dir).expanduser()
|
||
exp_folder = experiment_name or "default"
|
||
tb_path = log_root / "eval" / exp_folder
|
||
tb_path.parent.mkdir(parents=True, exist_ok=True)
|
||
writer = SummaryWriter(tb_path.as_posix())
|
||
|
||
model = RoRD().cuda()
|
||
model.load_state_dict(torch.load(model_path))
|
||
|
||
results = evaluate(
|
||
model,
|
||
val_dir,
|
||
annotations_dir,
|
||
templates_dir,
|
||
matching_cfg,
|
||
iou_threshold,
|
||
summary_writer=writer,
|
||
global_step=0,
|
||
)
|
||
|
||
print("\n--- 评估结果 ---")
|
||
print(f" 精确率 (Precision): {results['precision']:.4f}")
|
||
print(f" 召回率 (Recall): {results['recall']:.4f}")
|
||
print(f" F1 分数 (F1 Score): {results['f1']:.4f}")
|
||
|
||
if writer:
|
||
writer.add_text("metadata/model_path", model_path)
|
||
writer.close() |