# models/rord.py import torch import torch.nn as nn import torch.nn.functional as F from torchvision import models class RoRD(nn.Module): def __init__(self, fpn_out_channels: int = 256, fpn_levels=(2, 3, 4)): """ 修复后的 RoRD 模型。 - 实现了共享骨干网络,以提高计算效率和减少内存占用。 - 确保检测头和描述子头使用相同尺寸的特征图。 - 新增(可选)FPN 推理路径,提供多尺度特征用于高效匹配。 """ super(RoRD, self).__init__() vgg16_features = models.vgg16(pretrained=False).features # VGG16 特征各阶段索引(conv & relu 层序列) # relu2_2 索引 8,relu3_3 索引 15,relu4_3 索引 22 self.features = vgg16_features # 共享骨干(向后兼容单尺度路径,使用到 relu4_3) self.backbone = nn.Sequential(*list(vgg16_features.children())[:23]) # 检测头 self.detection_head = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 1, kernel_size=1), nn.Sigmoid() ) # 描述子头 self.descriptor_head = nn.Sequential( nn.Conv2d(512, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=1), nn.InstanceNorm2d(128) ) # --- FPN 组件(用于可选多尺度推理) --- self.fpn_out_channels = fpn_out_channels self.fpn_levels = tuple(sorted(set(fpn_levels))) # e.g., (2,3,4) # 横向连接 1x1 将 C2(128)/C3(256)/C4(512) 对齐到相同通道数 self.lateral_c2 = nn.Conv2d(128, fpn_out_channels, kernel_size=1) self.lateral_c3 = nn.Conv2d(256, fpn_out_channels, kernel_size=1) self.lateral_c4 = nn.Conv2d(512, fpn_out_channels, kernel_size=1) # 平滑 3x3 conv self.smooth_p2 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1) self.smooth_p3 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1) self.smooth_p4 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1) # 共享的 FPN 检测/描述子头(输入通道为 fpn_out_channels) self.det_head_fpn = nn.Sequential( nn.Conv2d(fpn_out_channels, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 1, kernel_size=1), nn.Sigmoid(), ) self.desc_head_fpn = nn.Sequential( nn.Conv2d(fpn_out_channels, 128, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(128, 128, kernel_size=1), nn.InstanceNorm2d(128), ) def forward(self, x: torch.Tensor, return_pyramid: bool = False): if not return_pyramid: # 向后兼容的单尺度路径(relu4_3) features = self.backbone(x) detection_map = self.detection_head(features) descriptors = self.descriptor_head(features) return detection_map, descriptors # --- FPN 路径:提取 C2/C3/C4 --- c2, c3, c4 = self._extract_c234(x) p4 = self.lateral_c4(c4) p3 = self.lateral_c3(c3) + F.interpolate(p4, size=c3.shape[-2:], mode="nearest") p2 = self.lateral_c2(c2) + F.interpolate(p3, size=c2.shape[-2:], mode="nearest") p4 = self.smooth_p4(p4) p3 = self.smooth_p3(p3) p2 = self.smooth_p2(p2) pyramid = {} if 4 in self.fpn_levels: pyramid["P4"] = (self.det_head_fpn(p4), self.desc_head_fpn(p4), 8) if 3 in self.fpn_levels: pyramid["P3"] = (self.det_head_fpn(p3), self.desc_head_fpn(p3), 4) if 2 in self.fpn_levels: pyramid["P2"] = (self.det_head_fpn(p2), self.desc_head_fpn(p2), 2) return pyramid def _extract_c234(self, x: torch.Tensor): """提取 VGG 中间层特征:C2(relU2_2), C3(relu3_3), C4(relu4_3).""" c2 = c3 = c4 = None for i, layer in enumerate(self.features): x = layer(x) if i == 8: # relu2_2 c2 = x elif i == 15: # relu3_3 c3 = x elif i == 22: # relu4_3 c4 = x break assert c2 is not None and c3 is not None and c4 is not None return c2, c3, c4