#!/usr/bin/env python3 """ Train a diffusion model for layout patch generation (skeleton). Planned: fine-tune Stable Diffusion (or Latent Diffusion) with optional ControlNet edge/skeleton conditions. Dependencies to consider: diffusers, transformers, accelerate, torch, torchvision, opencv-python. Current status: CLI skeleton and TODOs only. """ from __future__ import annotations import argparse def main() -> None: parser = argparse.ArgumentParser(description="Train diffusion model for layout patches (skeleton)") parser.add_argument("--data_dir", type=str, required=True, help="Prepared dataset root (images/ + conditions/)") parser.add_argument("--output_dir", type=str, required=True, help="Checkpoint output directory") parser.add_argument("--image_size", type=int, default=256) parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--max_steps", type=int, default=100000) parser.add_argument("--use_controlnet", action="store_true", help="Train with ControlNet conditioning") parser.add_argument("--condition_types", type=str, nargs="*", default=["edge"], help="e.g., edge skeleton dist") args = parser.parse_args() # TODO: implement dataset/dataloader (images and optional conditions) # TODO: load base pipeline (Stable Diffusion or Latent Diffusion) and optionally ControlNet # TODO: set up optimizer, LR schedule, EMA, gradient accumulation, and run training loop # TODO: save periodic checkpoints to output_dir print("[TODO] Implement diffusion training loop and checkpoints.") if __name__ == "__main__": main()