#!/usr/bin/env python3 """ Sample layout patches using a trained diffusion model (skeleton). Outputs raster PNGs into a target directory compatible with current training pipeline (no H pairing). Current status: CLI skeleton and TODOs only. """ from __future__ import annotations import argparse from pathlib import Path def main() -> None: parser = argparse.ArgumentParser(description="Sample layout patches from diffusion model (skeleton)") parser.add_argument("--ckpt", type=str, required=True, help="Path to trained diffusion checkpoint or HF repo id") parser.add_argument("--out_dir", type=str, required=True, help="Directory to write sampled PNGs") parser.add_argument("--num", type=int, default=200) parser.add_argument("--image_size", type=int, default=256) parser.add_argument("--guidance", type=float, default=5.0) parser.add_argument("--steps", type=int, default=50) parser.add_argument("--seed", type=int, default=42) parser.add_argument("--cond_dir", type=str, default=None, help="Optional condition maps directory") parser.add_argument("--cond_types", type=str, nargs="*", default=None, help="e.g., edge skeleton dist") args = parser.parse_args() out_dir = Path(args.out_dir) out_dir.mkdir(parents=True, exist_ok=True) # TODO: load pipeline from ckpt, set scheduler, handle conditions if provided, # sample args.num images, save as PNG files into out_dir. print("[TODO] Implement diffusion sampling and PNG saving.") if __name__ == "__main__": main()