add tool of layout
This commit is contained in:
@@ -1,100 +0,0 @@
|
||||
# RoRD 训练策略分析与改进
|
||||
|
||||
## 原始问题分析
|
||||
|
||||
### 1. 技术错误
|
||||
- **PIL.Image.LANCZOS 错误**: 使用了已弃用的 `Image.LANCZOS`,应改为 `Image.Resampling.LANCZOS`
|
||||
- **模型架构不匹配**: 检测头和描述子头使用了不同尺寸的特征图,导致训练不稳定
|
||||
|
||||
### 2. 训练策略问题
|
||||
|
||||
#### 2.1 损失函数设计
|
||||
- **检测损失**: 使用 MSE 损失不适合二分类问题,应使用 BCE 损失
|
||||
- **描述子损失**: Triplet Loss 采样策略不够有效,随机采样产生大量简单负样本
|
||||
|
||||
#### 2.2 数据增强策略
|
||||
- **尺度抖动范围过大**: `(0.7, 1.5)` 可能导致训练不稳定
|
||||
- **几何变换过于简单**: 只考虑8个离散方向,缺乏连续性
|
||||
- **缺少其他增强**: 没有亮度、对比度、噪声等增强
|
||||
|
||||
#### 2.3 训练配置
|
||||
- **批次大小过小**: 只有4,对于现代GPU效率低
|
||||
- **学习率可能过高**: 1e-4 可能导致训练不稳定
|
||||
- **缺少验证机制**: 没有验证集和早停
|
||||
- **缺少监控**: 没有详细的训练日志和损失分解
|
||||
|
||||
## 改进方案
|
||||
|
||||
### 1. 技术修复
|
||||
✅ **已修复**: PIL.Image.LANCZOS → Image.Resampling.LANCZOS
|
||||
✅ **已修复**: 统一检测头和描述子头的特征图尺寸
|
||||
|
||||
### 2. 损失函数改进
|
||||
✅ **检测损失**:
|
||||
- 使用 BCE 损失替代 MSE
|
||||
- 添加平滑 L1 损失作为辅助
|
||||
|
||||
✅ **描述子损失**:
|
||||
- 增加采样点数量 (100 → 200)
|
||||
- 使用网格采样替代随机采样
|
||||
- 实现困难负样本挖掘
|
||||
|
||||
### 3. 数据增强优化
|
||||
✅ **尺度抖动**: 缩小范围到 `(0.8, 1.2)`
|
||||
✅ **额外增强**:
|
||||
- 亮度调整 (0.8-1.2倍)
|
||||
- 对比度调整 (0.8-1.2倍)
|
||||
- 高斯噪声 (σ=5)
|
||||
|
||||
### 4. 训练配置优化
|
||||
✅ **批次大小**: 4 → 8
|
||||
✅ **学习率**: 1e-4 → 5e-5
|
||||
✅ **训练轮数**: 20 → 50
|
||||
✅ **添加权重衰减**: 1e-4
|
||||
|
||||
### 5. 训练流程改进
|
||||
✅ **验证集**: 80/20 分割
|
||||
✅ **学习率调度**: ReduceLROnPlateau
|
||||
✅ **早停机制**: 10个epoch无改善则停止
|
||||
✅ **梯度裁剪**: max_norm=1.0
|
||||
✅ **详细日志**: 训练和验证损失分解
|
||||
|
||||
## 预期效果
|
||||
|
||||
### 1. 训练稳定性
|
||||
- 更稳定的损失下降曲线
|
||||
- 减少过拟合风险
|
||||
- 更好的泛化能力
|
||||
|
||||
### 2. 模型性能
|
||||
- 更准确的检测结果
|
||||
- 更鲁棒的描述子
|
||||
- 更好的几何不变性
|
||||
|
||||
### 3. 训练效率
|
||||
- 更快的收敛速度
|
||||
- 更好的资源利用率
|
||||
- 更完善的监控机制
|
||||
|
||||
## 使用建议
|
||||
|
||||
### 1. 训练前准备
|
||||
```bash
|
||||
# 确保数据路径正确
|
||||
python train.py --data_dir /path/to/layouts --save_dir /path/to/save
|
||||
```
|
||||
|
||||
### 2. 监控训练
|
||||
- 查看日志文件了解详细训练过程
|
||||
- 关注验证损失变化趋势
|
||||
- 监控学习率自动调整
|
||||
|
||||
### 3. 模型选择
|
||||
- 使用 `rord_model_best.pth` 作为最终模型
|
||||
- 该模型在验证集上表现最佳
|
||||
|
||||
### 4. 进一步优化建议
|
||||
- 考虑使用预训练权重初始化
|
||||
- 实验不同的数据增强组合
|
||||
- 尝试其他损失函数权重平衡
|
||||
- 考虑使用混合精度训练加速
|
||||
@@ -6,7 +6,9 @@ readme = "README.md"
|
||||
requires-python = ">=3.12"
|
||||
dependencies = [
|
||||
"cairosvg>=2.8.2",
|
||||
"gdspy>=1.6.13",
|
||||
"gdstk>=0.9.60",
|
||||
"klayout>=0.30.2",
|
||||
"numpy>=2.3.0",
|
||||
"opencv-python>=4.11.0.86",
|
||||
"pillow>=11.2.1",
|
||||
|
||||
159
tools/klayoutconvertor.py
Normal file
159
tools/klayoutconvertor.py
Normal file
@@ -0,0 +1,159 @@
|
||||
# tools/klayoutconvertor.py
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
KLayout GDS to PNG Converter
|
||||
|
||||
This script uses KLayout's Python API to convert GDS files to PNG images.
|
||||
It accepts command-line arguments for input parameters.
|
||||
|
||||
Requirements:
|
||||
pip install klayout
|
||||
|
||||
Usage:
|
||||
python klayoutconvertor.py input.gds output.png [options]
|
||||
"""
|
||||
|
||||
import klayout.db as pya
|
||||
import klayout.lay as lay
|
||||
from PIL import Image
|
||||
import os
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
Image.MAX_IMAGE_PIXELS = None
|
||||
|
||||
|
||||
def export_gds_as_image(
|
||||
gds_path: str,
|
||||
output_path: str,
|
||||
layers: list = [1, 2],
|
||||
center_um: tuple = (0, 0),
|
||||
view_size_um: float = 100.0,
|
||||
resolution: int = 2048,
|
||||
binarize: bool = True
|
||||
) -> None:
|
||||
"""
|
||||
Export GDS file as PNG image using KLayout.
|
||||
|
||||
Args:
|
||||
gds_path: Input GDS file path
|
||||
output_path: Output PNG file path
|
||||
layers: List of layer numbers to include
|
||||
center_um: Center coordinates in micrometers (x, y)
|
||||
view_size_um: View size in micrometers
|
||||
resolution: Output image resolution
|
||||
binarize: Whether to convert to black and white
|
||||
"""
|
||||
if not os.path.exists(gds_path):
|
||||
raise FileNotFoundError(f"Input file not found: {gds_path}")
|
||||
|
||||
# Ensure output directory exists
|
||||
output_dir = os.path.dirname(output_path)
|
||||
if output_dir:
|
||||
os.makedirs(output_dir, exist_ok=True)
|
||||
|
||||
layout = pya.Layout()
|
||||
layout.read(gds_path)
|
||||
top = layout.top_cell()
|
||||
|
||||
# Create layout view
|
||||
view = lay.LayoutView()
|
||||
view.set_config("background-color", "#ffffff")
|
||||
view.set_config("grid-visible", "false")
|
||||
|
||||
# Load layout into view correctly
|
||||
view.load_layout(gds_path)
|
||||
|
||||
# Add all layers
|
||||
view.add_missing_layers()
|
||||
|
||||
# Configure view to show entire layout with reasonable resolution
|
||||
if view_size_um > 0:
|
||||
# Use specified view size
|
||||
box = pya.DBox(
|
||||
center_um[0] - view_size_um / 2,
|
||||
center_um[1] - view_size_um / 2,
|
||||
center_um[0] + view_size_um / 2,
|
||||
center_um[1] + view_size_um / 2
|
||||
)
|
||||
else:
|
||||
# Use full layout bounds with size limit
|
||||
bbox = top.bbox()
|
||||
if bbox:
|
||||
# Convert to micrometers (KLayout uses database units)
|
||||
dbu = layout.dbu
|
||||
box = pya.DBox(
|
||||
bbox.left * dbu,
|
||||
bbox.bottom * dbu,
|
||||
bbox.right * dbu,
|
||||
bbox.top * dbu
|
||||
)
|
||||
|
||||
else:
|
||||
# Fallback to 100x100 um if empty layout
|
||||
box = pya.DBox(-50, -50, 50, 50)
|
||||
|
||||
view.max_hier()
|
||||
view.zoom_box(box)
|
||||
|
||||
# Save to temporary file first, then load with PIL
|
||||
import tempfile
|
||||
temp_path = tempfile.NamedTemporaryFile(suffix='.png', delete=False).name
|
||||
|
||||
try:
|
||||
view.save_image(temp_path, resolution, resolution)
|
||||
img = Image.open(temp_path)
|
||||
|
||||
if binarize:
|
||||
# Convert to grayscale and binarize
|
||||
img = img.convert("L")
|
||||
img = img.point(lambda x: 255 if x > 128 else 0, '1')
|
||||
else:
|
||||
# Convert to grayscale
|
||||
img = img.convert("L")
|
||||
|
||||
img.save(output_path)
|
||||
finally:
|
||||
# Clean up temp file
|
||||
if os.path.exists(temp_path):
|
||||
os.unlink(temp_path)
|
||||
|
||||
|
||||
def main():
|
||||
"""Main CLI entry point."""
|
||||
parser = argparse.ArgumentParser(description='Convert GDS to PNG using KLayout')
|
||||
parser.add_argument('input', help='Input GDS file')
|
||||
parser.add_argument('output', help='Output PNG file')
|
||||
parser.add_argument('--layers', nargs='+', type=int, default=[1, 2],
|
||||
help='Layers to include (default: 1 2)')
|
||||
parser.add_argument('--center-x', type=float, default=0,
|
||||
help='Center X coordinate in micrometers (default: 0)')
|
||||
parser.add_argument('--center-y', type=float, default=0,
|
||||
help='Center Y coordinate in micrometers (default: 0)')
|
||||
parser.add_argument('--size', type=float, default=0,
|
||||
help='View size in micrometers (default: 0 = full layout)')
|
||||
parser.add_argument('--resolution', type=int, default=2048,
|
||||
help='Output image resolution (default: 2048)')
|
||||
parser.add_argument('--no-binarize', action='store_true',
|
||||
help='Disable binarization (keep grayscale)')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
try:
|
||||
export_gds_as_image(
|
||||
gds_path=args.input,
|
||||
output_path=args.output,
|
||||
layers=args.layers,
|
||||
center_um=(args.center_x, args.center_y),
|
||||
view_size_um=args.size,
|
||||
resolution=args.resolution,
|
||||
binarize=not args.no_binarize
|
||||
)
|
||||
print("Conversion completed successfully!")
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
@@ -1,88 +0,0 @@
|
||||
import gdstk
|
||||
import cairosvg
|
||||
import argparse
|
||||
import os
|
||||
|
||||
def convert_layout_to_png_via_svg(layout_path, png_path, cell_name=None, pixels_per_unit=10):
|
||||
"""
|
||||
通过先生成 SVG 再转换为 PNG 的方式,将 GDSII 或 OASIS 文件光栅化。
|
||||
此版本修正了 write_svg 的参数错误,兼容性更强。
|
||||
|
||||
参数:
|
||||
layout_path (str): 输入的版图文件路径(.gds 或 .oas)。
|
||||
png_path (str): 输出的 PNG 文件路径。
|
||||
cell_name (str, optional): 需要转换的单元名称。如果为 None,则使用顶层单元。
|
||||
pixels_per_unit (int, optional): 版图数据库单位到像素的转换比例,控制图像分辨率。
|
||||
"""
|
||||
print(f"正在从 '{layout_path}' 读取版图文件...")
|
||||
|
||||
# 1. 加载版图文件
|
||||
_, extension = os.path.splitext(layout_path)
|
||||
extension = extension.lower()
|
||||
|
||||
if extension == '.gds':
|
||||
lib = gdstk.read_gds(layout_path)
|
||||
elif extension == '.oas':
|
||||
lib = gdstk.read_oas(layout_path)
|
||||
else:
|
||||
raise ValueError(f"不支持的文件类型: '{extension}'。请输入 .gds 或 .oas 文件。")
|
||||
|
||||
if cell_name:
|
||||
cell = lib.cells[cell_name]
|
||||
else:
|
||||
top_cells = lib.top_level()
|
||||
if not top_cells:
|
||||
raise ValueError("错误:版图文件中没有找到顶层单元。")
|
||||
cell = top_cells[0]
|
||||
print(f"未指定单元名称,自动选择顶层单元: '{cell.name}'")
|
||||
|
||||
# 2. 将版图单元写入临时的 SVG 文件 (已移除无效的 padding 参数)
|
||||
temp_svg_path = png_path + ".temp.svg"
|
||||
print(f"步骤 1/2: 正在将单元 '{cell.name}' 转换为临时 SVG 文件...")
|
||||
cell.write_svg(
|
||||
temp_svg_path # 隐藏默认字体,避免影响边界
|
||||
)
|
||||
|
||||
# 3. 使用 cairosvg 将 SVG 文件转换为 PNG
|
||||
print(f"步骤 2/2: 正在将 SVG 转换为 PNG...")
|
||||
# 获取单元的精确边界框
|
||||
bb = cell.bb()
|
||||
if bb is None:
|
||||
raise ValueError(f"单元 '{cell.name}' 为空或无法获取其边界框。")
|
||||
|
||||
# 根据边界框和分辨率计算输出图像的宽度
|
||||
width, height = bb[1] - bb[0]
|
||||
output_width = width * pixels_per_unit
|
||||
|
||||
cairosvg.svg2png(url=temp_svg_path, write_to=png_path, output_width=output_width)
|
||||
|
||||
# 4. 清理临时的 SVG 文件
|
||||
os.remove(temp_svg_path)
|
||||
|
||||
print(f"成功!图像已保存至: '{png_path}'")
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(
|
||||
description="将 GDSII (.gds) 或 OASIS (.oas) 版图文件转换为 PNG 图像 (通过SVG)。",
|
||||
epilog="示例: python rasterize.py -i my_chip.oas -o my_chip.png -ppu 20"
|
||||
)
|
||||
parser.add_argument('-i', '--input', type=str, required=True, help="输入的版图文件路径 (.gds 或 .oas)。")
|
||||
parser.add_argument('-o', '--output', type=str, help="输出的 PNG 文件路径。如果未提供,将使用输入文件名并替换扩展名为 .png。")
|
||||
parser.add_argument('-c', '--cell', type=str, default=None, help="要转换的特定单元的名称。默认为顶层单元。")
|
||||
parser.add_argument('-ppu', '--pixels_per_unit', type=int, default=10, help="每微米(um)的像素数,用于控制输出图像的分辨率。")
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.output:
|
||||
base_name = os.path.splitext(os.path.basename(args.input))[0]
|
||||
args.output = f"{base_name}.png"
|
||||
print(f"未指定输出路径,将自动保存为: '{args.output}'")
|
||||
|
||||
try:
|
||||
convert_layout_to_png_via_svg(
|
||||
layout_path=args.input,
|
||||
png_path=args.output,
|
||||
cell_name=args.cell,
|
||||
pixels_per_unit=args.pixels_per_unit
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"\n处理失败: {e}")
|
||||
35
uv.lock
generated
35
uv.lock
generated
@@ -108,6 +108,15 @@ wheels = [
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/bb/61/78c7b3851add1481b048b5fdc29067397a1784e2910592bc81bb3f608635/fsspec-2025.5.1-py3-none-any.whl", hash = "sha256:24d3a2e663d5fc735ab256263c4075f374a174c3410c0b25e5bd1970bceaa462", size = 199052, upload-time = "2025-05-24T12:03:21.66Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "gdspy"
|
||||
version = "1.6.13"
|
||||
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
|
||||
dependencies = [
|
||||
{ name = "numpy" },
|
||||
]
|
||||
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/7a/c5/01a4b160bc9ac9b0f8621dd6f90e964596e60a369ff2d076ebb4ce52c402/gdspy-1.6.13.zip", hash = "sha256:38c61a7267f90767d90b8fcdda96c7a629df26e06f7153084c773f3d6363f4f0", size = 157902, upload-time = "2023-04-26T12:21:35.91Z" }
|
||||
|
||||
[[package]]
|
||||
name = "gdstk"
|
||||
version = "0.9.60"
|
||||
@@ -147,6 +156,28 @@ wheels = [
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "klayout"
|
||||
version = "0.30.2"
|
||||
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
|
||||
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/0c/31/e3a3b3413d81fbc31e7176182410d0fb8bda73ae4f380ca4030661e62ea7/klayout-0.30.2.tar.gz", hash = "sha256:1d1b919f02b24d579c8c063407352e39a86b74c3149572d4880a0fae83634ba5", size = 3846876, upload-time = "2025-05-29T22:14:55.661Z" }
|
||||
wheels = [
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/54/ff/d87f7a258562aa51d781b27c85e360f035d3978320550a07222b839d5db6/klayout-0.30.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:508047cf3dac2f78e8ba4d41f00b4e63db1e071b767c072e1311baddf0671004", size = 21080501, upload-time = "2025-05-29T22:14:04.029Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6b/f0/4cae68285f5a1d7b8195b7a67a1de5539f56071f3fea475df9864153ff0e/klayout-0.30.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:988afdf5236b403a362a4aece786b09497d886604ec366313e0e73d0ff2f0045", size = 19642508, upload-time = "2025-05-29T22:14:06.536Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6d/ec/fcb1838d46342beddeba0bfff64a64b8ad1652628cd78d66a26382f311d8/klayout-0.30.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9202f98ccf6e4d65930f2b6c16f779946b445dabd6e6eb0dcacd4edf8748dba", size = 23441152, upload-time = "2025-05-29T22:14:08.657Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/99/9b/9ed15b304af88bd393cad463360bfaf5e311d55fe5ced8b8d227dc0797dc/klayout-0.30.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a48691ba05e005726610f5e88803260d251a95b13b45dcaffa65e648a680e30d", size = 25191179, upload-time = "2025-05-29T22:14:11.731Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fb/0b/80efdb75a78c0c31f49266440c7b543ccec7bb98a34d24c49dea70262ac1/klayout-0.30.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:5d71a49e6a81064b677320d44c17a88201aba115d844ab4695913c5a4b7da5d7", size = 26968714, upload-time = "2025-05-29T22:14:14.336Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/91/fa/5ff012942a88f2d71a72ac892e2697e5cf8f34ccd9a6abf26195004622d5/klayout-0.30.2-cp312-cp312-win32.whl", hash = "sha256:a7395a4de62160b1844ac1775231a41f1a227dd74cef2c898dc0fea9aeca41a2", size = 11511576, upload-time = "2025-05-29T22:51:16.639Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6f/e8/9f883666ce969a07a26892ab7a6d2b24d7504e84c4880723924836639be6/klayout-0.30.2-cp312-cp312-win_amd64.whl", hash = "sha256:3d0776ec9d53a2f3451694c68df2d28159b3708aaa16bfbd432921dcec71608a", size = 13190391, upload-time = "2025-05-29T22:51:19.026Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b8/1b/788488ac14c11169d794a2d5bcb86392f422cff9a34887b5e0bb36a9ec83/klayout-0.30.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c7e289b8000aa1e4563fb2f46f73e9ead9ed8f123eceab954b5f9319f82f8868", size = 21080506, upload-time = "2025-05-29T22:14:16.996Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f4/84/8e0a17f9acd6c40d2a149b028f8e3e95c86030385396777d3ad7eb2c1720/klayout-0.30.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:6fb118949f5ae05e85a8ff00db0b3741eb6b010fa0c10a970189819bc646b441", size = 19642487, upload-time = "2025-05-29T22:14:19.287Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3e/31/7b82974d2091dbe4c32c72a5dbd9c0454cb69da6a2c5e828ad55ec154de3/klayout-0.30.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:459044166d4068f9e866680f402ffcad08b0fc346ee282fcfbc975cf3776b3bc", size = 23441135, upload-time = "2025-05-29T22:14:21.807Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c9/4a/697a3211ce128cb08e09fd9a4633f665f4e9de77d324b7ef89744f7df939/klayout-0.30.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dc7e937f9a3caed8e14b2febcfd2b4d916d1cbc18d0b52f8a019413f9c50f826", size = 25191185, upload-time = "2025-05-29T22:14:24.01Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2e/c5/5bb5d8f95338e65d92fbe005bb09dc0fa57d2b037f695d332b0d570dea3f/klayout-0.30.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:966354bc59ba132804832441f4f545c0336a94b284f3b64e62baac4918be52da", size = 26968753, upload-time = "2025-05-29T22:14:26.42Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b6/09/6e0a606bcc24d9a985fc1c8623cbfe5ef649bda107e6c54c2d77d18e8bc2/klayout-0.30.2-cp313-cp313-win32.whl", hash = "sha256:478a673b125e3c81551652ef93fb69fd56e9cf16e020b889592016ad5046623a", size = 11511690, upload-time = "2025-05-29T22:51:21.302Z" },
|
||||
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e0/0e/89dd819f642d2a0d306905dac27a7d82ba75d2e887753c5a432ad7cbd5c4/klayout-0.30.2-cp313-cp313-win_amd64.whl", hash = "sha256:c27601cfd8f39ff55f63b795abc9c043ec46319127c86084b12b7c5b187135f6", size = 13190664, upload-time = "2025-05-29T22:51:23.621Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "markupsafe"
|
||||
version = "3.0.2"
|
||||
@@ -450,7 +481,9 @@ version = "0.1.0"
|
||||
source = { virtual = "." }
|
||||
dependencies = [
|
||||
{ name = "cairosvg" },
|
||||
{ name = "gdspy" },
|
||||
{ name = "gdstk" },
|
||||
{ name = "klayout" },
|
||||
{ name = "numpy" },
|
||||
{ name = "opencv-python" },
|
||||
{ name = "pillow" },
|
||||
@@ -461,7 +494,9 @@ dependencies = [
|
||||
[package.metadata]
|
||||
requires-dist = [
|
||||
{ name = "cairosvg", specifier = ">=2.8.2" },
|
||||
{ name = "gdspy", specifier = ">=1.6.13" },
|
||||
{ name = "gdstk", specifier = ">=0.9.60" },
|
||||
{ name = "klayout", specifier = ">=0.30.2" },
|
||||
{ name = "numpy", specifier = ">=2.3.0" },
|
||||
{ name = "opencv-python", specifier = ">=4.11.0.86" },
|
||||
{ name = "pillow", specifier = ">=11.2.1" },
|
||||
|
||||
Reference in New Issue
Block a user