add scale robust way

This commit is contained in:
Jiao77
2025-06-09 01:49:13 +08:00
parent 7cc1a5b8d2
commit 98f6709768
4 changed files with 254 additions and 110 deletions

View File

@@ -15,13 +15,14 @@ import config
from models.rord import RoRD
from utils.data_utils import get_transform
# --- 训练专用数据集类 ---
# --- (已修改) 训练专用数据集类 ---
class ICLayoutTrainingDataset(Dataset):
def __init__(self, image_dir, patch_size=256, transform=None):
def __init__(self, image_dir, patch_size=256, transform=None, scale_range=(1.0, 1.0)):
self.image_dir = image_dir
self.image_paths = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith('.png')]
self.patch_size = patch_size
self.transform = transform
self.scale_range = scale_range # 新增尺度范围参数
def __len__(self):
return len(self.image_paths)
@@ -29,14 +30,30 @@ class ICLayoutTrainingDataset(Dataset):
def __getitem__(self, index):
img_path = self.image_paths[index]
image = Image.open(img_path).convert('L')
W, H = image.size
x = np.random.randint(0, W - self.patch_size + 1)
y = np.random.randint(0, H - self.patch_size + 1)
patch = image.crop((x, y, x + self.patch_size, y + self.patch_size))
# --- 新增:尺度抖动数据增强 ---
# 1. 随机选择一个缩放比例
scale = np.random.uniform(self.scale_range[0], self.scale_range[1])
# 2. 根据缩放比例计算需要从原图裁剪的尺寸
crop_size = int(self.patch_size / scale)
# 确保裁剪尺寸不超过图像边界
if crop_size > min(W, H):
crop_size = min(W, H)
# 3. 随机裁剪
x = np.random.randint(0, W - crop_size + 1)
y = np.random.randint(0, H - crop_size + 1)
patch = image.crop((x, y, x + crop_size, y + crop_size))
# 4. 将裁剪出的图像块缩放回标准的 patch_size
patch = patch.resize((self.patch_size, self.patch_size), Image.LANCZOS)
# --- 尺度抖动结束 ---
patch_np = np.array(patch)
# 实现8个方向的离散几何变换
# 实现8个方向的离散几何变换 (这部分逻辑不变)
theta_deg = np.random.choice([0, 90, 180, 270])
is_mirrored = np.random.choice([True, False])
cx, cy = self.patch_size / 2.0, self.patch_size / 2.0
@@ -59,10 +76,10 @@ class ICLayoutTrainingDataset(Dataset):
patch = self.transform(patch)
transformed_patch = self.transform(transformed_patch)
H_tensor = torch.from_numpy(H[:2, :]).float() # 通常损失函数需要2x3的仿射矩阵
H_tensor = torch.from_numpy(H[:2, :]).float()
return patch, transformed_patch, H_tensor
# --- 特征图变换与损失函数 ---
# --- 特征图变换与损失函数 (无变动) ---
def warp_feature_map(feature_map, H_inv):
B, C, H, W = feature_map.size()
grid = F.affine_grid(H_inv, feature_map.size(), align_corners=False).to(feature_map.device)
@@ -77,34 +94,29 @@ def compute_detection_loss(det_original, det_rotated, H):
def compute_description_loss(desc_original, desc_rotated, H, margin=1.0):
B, C, H_feat, W_feat = desc_original.size()
num_samples = 100
# 随机采样锚点坐标
coords = torch.rand(B, num_samples, 2, device=desc_original.device) * 2 - 1 # [-1, 1]
# 提取锚点描述子
coords = torch.rand(B, num_samples, 2, device=desc_original.device) * 2 - 1
anchor = F.grid_sample(desc_original, coords.unsqueeze(1), align_corners=False).squeeze(2).transpose(1, 2)
# 计算正样本坐标
coords_hom = torch.cat([coords, torch.ones(B, num_samples, 1, device=coords.device)], dim=2)
M_inv = torch.inverse(torch.cat([H, torch.tensor([0.0, 0.0, 1.0]).view(1, 1, 3).repeat(H.shape[0], 1, 1)], dim=1))
coords_transformed = (coords_hom @ M_inv.transpose(1, 2))[:, :, :2]
# 提取正样本描述子
positive = F.grid_sample(desc_rotated, coords_transformed.unsqueeze(1), align_corners=False).squeeze(2).transpose(1, 2)
# 随机采样负样本
neg_coords = torch.rand(B, num_samples, 2, device=desc_original.device) * 2 - 1
negative = F.grid_sample(desc_rotated, neg_coords.unsqueeze(1), align_corners=False).squeeze(2).transpose(1, 2)
triplet_loss = nn.TripletMarginLoss(margin=margin, p=2)
return triplet_loss(anchor, positive, negative)
# --- 主函数与命令行接口 ---
# --- (已修改) 主函数与命令行接口 ---
def main(args):
print("--- 开始训练 RoRD 模型 ---")
print(f"训练参数: Epochs={args.epochs}, Batch Size={args.batch_size}, LR={args.lr}")
transform = get_transform()
dataset = ICLayoutTrainingDataset(args.data_dir, patch_size=config.PATCH_SIZE, transform=transform)
# 在数据集初始化时传入尺度抖动范围
dataset = ICLayoutTrainingDataset(
args.data_dir,
patch_size=config.PATCH_SIZE,
transform=transform,
scale_range=config.SCALE_JITTER_RANGE
)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
model = RoRD().cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
@@ -116,14 +128,11 @@ def main(args):
original, rotated, H = original.cuda(), rotated.cuda(), H.cuda()
det_original, desc_original = model(original)
det_rotated, desc_rotated = model(rotated)
loss = compute_detection_loss(det_original, det_rotated, H) + compute_description_loss(desc_original, desc_rotated, H)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss_val += loss.item()
print(f"--- Epoch {epoch+1} 完成, 平均 Loss: {total_loss_val / len(dataloader):.4f} ---")
if not os.path.exists(args.save_dir):