From 98f6709768512c6e40ec0fb2326711ef66ef3a73 Mon Sep 17 00:00:00 2001 From: Jiao77 Date: Mon, 9 Jun 2025 01:49:13 +0800 Subject: [PATCH] add scale robust way --- config.py | 22 +++--- evaluate.py | 82 +++++++++++++++------- match.py | 199 ++++++++++++++++++++++++++++++++++++++++------------ train.py | 61 +++++++++------- 4 files changed, 254 insertions(+), 110 deletions(-) diff --git a/config.py b/config.py index ea31e86..0e7e981 100644 --- a/config.py +++ b/config.py @@ -3,29 +3,27 @@ # --- 训练参数 --- LEARNING_RATE = 1e-4 BATCH_SIZE = 4 -NUM_EPOCHS = 20 # 增加了训练轮数 +NUM_EPOCHS = 20 PATCH_SIZE = 256 +# (新增) 训练时尺度抖动范围 +SCALE_JITTER_RANGE = (0.7, 1.5) # --- 匹配与评估参数 --- -# 关键点检测的置信度阈值 KEYPOINT_THRESHOLD = 0.5 -# RANSAC 重投影误差阈值(像素) RANSAC_REPROJ_THRESHOLD = 5.0 -# RANSAC 判定为有效匹配所需的最小内点数 -MIN_INLIERS = 15 # 适当提高以增加匹配的可靠性 -# IoU (Intersection over Union) 阈值,用于评估 +MIN_INLIERS = 15 IOU_THRESHOLD = 0.5 +# (新增) 推理时模板匹配的图像金字塔尺度 +PYRAMID_SCALES = [0.75, 1.0, 1.5] +# (新增) 推理时处理大版图的滑动窗口参数 +INFERENCE_WINDOW_SIZE = 1024 +INFERENCE_STRIDE = 768 # 小于INFERENCE_WINDOW_SIZE以保证重叠 # --- 文件路径 --- -# 训练数据目录 +# (路径保持不变, 请根据您的环境修改) LAYOUT_DIR = 'path/to/layouts' -# 模型保存目录 SAVE_DIR = 'path/to/save' -# 验证集图像目录 VAL_IMG_DIR = 'path/to/val/images' -# 验证集标注目录 VAL_ANN_DIR = 'path/to/val/annotations' -# 模板图像目录 TEMPLATE_DIR = 'path/to/templates' -# 默认加载的模型路径 MODEL_PATH = 'path/to/save/model_final.pth' \ No newline at end of file diff --git a/evaluate.py b/evaluate.py index 51ec5e9..f987615 100644 --- a/evaluate.py +++ b/evaluate.py @@ -10,7 +10,8 @@ import config from models.rord import RoRD from utils.data_utils import get_transform from data.ic_dataset import ICLayoutDataset -from match import match_template_to_layout +# (已修改) 导入新的匹配函数 +from match import match_template_multiscale def compute_iou(box1, box2): x1, y1, w1, h1 = box1['x'], box1['y'], box1['width'], box1['height'] @@ -21,45 +22,73 @@ def compute_iou(box1, box2): union_area = w1 * h1 + w2 * h2 - inter_area return inter_area / union_area if union_area > 0 else 0 -def evaluate(model, val_dataset, template_dir): +# --- (已修改) 评估函数 --- +def evaluate(model, val_dataset_dir, val_annotations_dir, template_dir): model.eval() all_tp, all_fp, all_fn = 0, 0, 0 + + # 只需要一个统一的 transform 给匹配函数内部使用 transform = get_transform() template_paths = [os.path.join(template_dir, f) for f in os.listdir(template_dir) if f.endswith('.png')] + layout_image_names = [f for f in os.listdir(val_dataset_dir) if f.endswith('.png')] - for layout_tensor, annotation in val_dataset: - layout_tensor = layout_tensor.unsqueeze(0).cuda() - gt_by_template = {box['template']: [] for box in annotation.get('boxes', [])} + # (已修改) 循环遍历验证集中的每个版图文件 + for layout_name in layout_image_names: + print(f"\n正在评估版图: {layout_name}") + layout_path = os.path.join(val_dataset_dir, layout_name) + annotation_path = os.path.join(val_annotations_dir, layout_name.replace('.png', '.json')) + + # 加载原始PIL图像,以支持滑动窗口 + layout_image = Image.open(layout_path).convert('L') + + # 加载标注信息 + if not os.path.exists(annotation_path): + continue + with open(annotation_path, 'r') as f: + annotation = json.load(f) + + # 按模板对真实标注进行分组 + gt_by_template = {os.path.basename(box['template']): [] for box in annotation.get('boxes', [])} for box in annotation.get('boxes', []): - gt_by_template[box['template']].append(box) + gt_by_template[os.path.basename(box['template'])].append(box) + # 遍历每个模板,在当前版图上进行匹配 for template_path in template_paths: template_name = os.path.basename(template_path) - template_tensor = transform(Image.open(template_path).convert('L')).unsqueeze(0).cuda() + template_image = Image.open(template_path).convert('L') + + # (已修改) 调用新的多尺度匹配函数 + detected = match_template_multiscale(model, layout_image, template_image, transform) - detected = match_template_to_layout(model, layout_tensor, template_tensor) gt_boxes = gt_by_template.get(template_name, []) + # 计算 TP, FP, FN (这部分逻辑不变) matched_gt = [False] * len(gt_boxes) tp = 0 - for det_box in detected: - best_iou = 0 - best_gt_idx = -1 - for i, gt_box in enumerate(gt_boxes): - if matched_gt[i]: continue - iou = compute_iou(det_box, gt_box) - if iou > best_iou: - best_iou, best_gt_idx = iou, i - - if best_iou > config.IOU_THRESHOLD: - tp += 1 - matched_gt[best_gt_idx] = True + if len(detected) > 0: + for det_box in detected: + best_iou = 0 + best_gt_idx = -1 + for i, gt_box in enumerate(gt_boxes): + if matched_gt[i]: continue + iou = compute_iou(det_box, gt_box) + if iou > best_iou: + best_iou, best_gt_idx = iou, i + + if best_iou > config.IOU_THRESHOLD: + if not matched_gt[best_gt_idx]: + tp += 1 + matched_gt[best_gt_idx] = True - all_tp += tp - all_fp += len(detected) - tp - all_fn += len(gt_boxes) - tp + fp = len(detected) - tp + fn = len(gt_boxes) - tp + all_tp += tp + all_fp += fp + all_fn += fn + + # 计算最终指标 precision = all_tp / (all_tp + all_fp) if (all_tp + all_fp) > 0 else 0 recall = all_tp / (all_tp + all_fn) if (all_tp + all_fn) > 0 else 0 f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) > 0 else 0 @@ -75,10 +104,11 @@ if __name__ == "__main__": model = RoRD().cuda() model.load_state_dict(torch.load(args.model_path)) - val_dataset = ICLayoutDataset(args.val_dir, args.annotations_dir, get_transform()) - results = evaluate(model, val_dataset, args.templates_dir) - print("评估结果:") + # (已修改) 不再需要预加载数据集,直接传入路径 + results = evaluate(model, args.val_dir, args.annotations_dir, args.templates_dir) + + print("\n--- 评估结果 ---") print(f" 精确率 (Precision): {results['precision']:.4f}") print(f" 召回率 (Recall): {results['recall']:.4f}") print(f" F1 分数 (F1 Score): {results['f1']:.4f}") \ No newline at end of file diff --git a/match.py b/match.py index 79cdcd0..cc754c2 100644 --- a/match.py +++ b/match.py @@ -12,69 +12,174 @@ import config from models.rord import RoRD from utils.data_utils import get_transform -def extract_keypoints_and_descriptors(model, image, kp_thresh): +# --- 特征提取函数 (基本无变动) --- +def extract_keypoints_and_descriptors(model, image_tensor, kp_thresh): with torch.no_grad(): - detection_map, desc = model(image) - binary_map = (detection_map > kp_thresh).float() - coords = torch.nonzero(binary_map[0, 0]).float() - keypoints_input = coords[:, [1, 0]] * 8.0 # Stride of descriptor is 8 + detection_map, desc = model(image_tensor) + + device = detection_map.device + binary_map = (detection_map > kp_thresh).squeeze(0).squeeze(0) + coords = torch.nonzero(binary_map).float() # y, x + + if len(coords) == 0: + return torch.tensor([], device=device), torch.tensor([], device=device) - descriptors = F.grid_sample(desc, coords.flip(1).view(1, -1, 1, 2) / torch.tensor([(desc.shape[3]-1)/2, (desc.shape[2]-1)/2], device=desc.device) - 1, align_corners=True).squeeze().T - descriptors = F.normalize(descriptors, p=2, dim=1) - return keypoints_input, descriptors + # 描述子采样 + coords_for_grid = coords.flip(1).view(1, -1, 1, 2) # N, 2 -> 1, N, 1, 2 (x,y) + # 归一化到 [-1, 1] + coords_for_grid = coords_for_grid / torch.tensor([(desc.shape[3]-1)/2, (desc.shape[2]-1)/2], device=device) - 1 + + descriptors = F.grid_sample(desc, coords_for_grid, align_corners=True).squeeze().T + descriptors = F.normalize(descriptors, p=2, dim=1) + + # 将关键点坐标从特征图尺度转换回图像尺度 + # VGG到relu4_3的下采样率为8 + keypoints = coords.flip(1) * 8.0 # x, y + return keypoints, descriptors + +# --- (新增) 滑动窗口特征提取函数 --- +def extract_features_sliding_window(model, large_image, transform): + """ + 使用滑动窗口从大图上提取所有关键点和描述子 + """ + print("使用滑动窗口提取大版图特征...") + device = next(model.parameters()).device + W, H = large_image.size + window_size = config.INFERENCE_WINDOW_SIZE + stride = config.INFERENCE_STRIDE + + all_kps = [] + all_descs = [] + + for y in range(0, H, stride): + for x in range(0, W, stride): + # 确保窗口不越界 + x_end = min(x + window_size, W) + y_end = min(y + window_size, H) + + # 裁剪窗口 + patch = large_image.crop((x, y, x_end, y_end)) + + # 预处理 + patch_tensor = transform(patch).unsqueeze(0).to(device) + + # 提取特征 + kps, descs = extract_keypoints_and_descriptors(model, patch_tensor, config.KEYPOINT_THRESHOLD) + + if len(kps) > 0: + # 将局部坐标转换为全局坐标 + kps[:, 0] += x + kps[:, 1] += y + all_kps.append(kps) + all_descs.append(descs) + + if not all_kps: + return torch.tensor([], device=device), torch.tensor([], device=device) + + print(f"大版图特征提取完毕,共找到 {sum(len(k) for k in all_kps)} 个关键点。") + return torch.cat(all_kps, dim=0), torch.cat(all_descs, dim=0) + + +# --- 互近邻匹配 (无变动) --- def mutual_nearest_neighbor(descs1, descs2): + if len(descs1) == 0 or len(descs2) == 0: + return torch.empty((0, 2), dtype=torch.int64) sim = descs1 @ descs2.T nn12 = torch.max(sim, dim=1) nn21 = torch.max(sim, dim=0) ids1 = torch.arange(0, sim.shape[0], device=sim.device) mask = (ids1 == nn21.indices[nn12.indices]) matches = torch.stack([ids1[mask], nn12.indices[mask]], dim=1) - return matches.cpu().numpy() + return matches -def match_template_to_layout(model, layout_image, template_image): - layout_kps, layout_descs = extract_keypoints_and_descriptors(model, layout_image, config.KEYPOINT_THRESHOLD) - template_kps, template_descs = extract_keypoints_and_descriptors(model, template_image, config.KEYPOINT_THRESHOLD) +# --- (已修改) 多尺度、多实例匹配主函数 --- +def match_template_multiscale(model, layout_image, template_image, transform): + """ + 在不同尺度下搜索模板,并检测多个实例 + """ + # 1. 对大版图使用滑动窗口提取全部特征 + layout_kps, layout_descs = extract_features_sliding_window(model, layout_image, transform) + + if len(layout_kps) < config.MIN_INLIERS: + print("从大版图中提取的关键点过少,无法进行匹配。") + return [] - active_layout_mask = torch.ones(len(layout_kps), dtype=bool, device=layout_kps.device) found_instances = [] - + active_layout_mask = torch.ones(len(layout_kps), dtype=bool, device=layout_kps.device) + + # 2. 多实例迭代检测 while True: - current_indices = torch.nonzero(active_layout_mask).squeeze(1) - if len(current_indices) < config.MIN_INLIERS: + current_active_indices = torch.nonzero(active_layout_mask).squeeze(1) + + # 如果剩余活动关键点过少,则停止 + if len(current_active_indices) < config.MIN_INLIERS: break - current_layout_kps, current_layout_descs = layout_kps[current_indices], layout_descs[current_indices] - matches = mutual_nearest_neighbor(template_descs, current_layout_descs) + current_layout_kps = layout_kps[current_active_indices] + current_layout_descs = layout_descs[current_active_indices] - if len(matches) < 4: break + best_match_info = {'inliers': 0, 'H': None, 'src_pts': None, 'dst_pts': None, 'mask': None} - src_pts = template_kps[matches[:, 0]].cpu().numpy() - dst_pts = current_layout_kps[matches[:, 1]].cpu().numpy() + # 3. 图像金字塔:遍历模板的每个尺度 + print("在新尺度下搜索模板...") + for scale in config.PYRAMID_SCALES: + W, H = template_image.size + new_W, new_H = int(W * scale), int(H * scale) + + # 缩放模板 + scaled_template = template_image.resize((new_W, new_H), Image.LANCZOS) + template_tensor = transform(scaled_template).unsqueeze(0).to(layout_kps.device) + + # 提取缩放后模板的特征 + template_kps, template_descs = extract_keypoints_and_descriptors(model, template_tensor, config.KEYPOINT_THRESHOLD) + + if len(template_kps) < 4: continue - H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, config.RANSAC_REPROJ_THRESHOLD) - if H is None or mask.sum() < config.MIN_INLIERS: + # 匹配当前尺度的模板和活动状态的版图特征 + matches = mutual_nearest_neighbor(template_descs, current_layout_descs) + + if len(matches) < 4: continue + + # RANSAC + # 注意:模板关键点坐标需要还原到原始尺寸,才能计算正确的H + src_pts = template_kps[matches[:, 0]].cpu().numpy() / scale + dst_pts_indices = current_active_indices[matches[:, 1]] + dst_pts = layout_kps[dst_pts_indices].cpu().numpy() + + H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, config.RANSAC_REPROJ_THRESHOLD) + + if H is not None and mask.sum() > best_match_info['inliers']: + best_match_info = {'inliers': mask.sum(), 'H': H, 'mask': mask, 'scale': scale, 'dst_pts': dst_pts} + + # 4. 如果在所有尺度中找到了最佳匹配,则记录并屏蔽 + if best_match_info['inliers'] > config.MIN_INLIERS: + print(f"找到一个匹配实例!内点数: {best_match_info['inliers']}, 使用的模板尺度: {best_match_info['scale']:.2f}x") + + inlier_mask = best_match_info['mask'].ravel().astype(bool) + inlier_layout_kps = best_match_info['dst_pts'][inlier_mask] + + x_min, y_min = inlier_layout_kps.min(axis=0) + x_max, y_max = inlier_layout_kps.max(axis=0) + + instance = {'x': int(x_min), 'y': int(y_min), 'width': int(x_max - x_min), 'height': int(y_max - y_min), 'homography': best_match_info['H']} + found_instances.append(instance) + + # 屏蔽已匹配区域的关键点,以便检测下一个实例 + kp_x, kp_y = layout_kps[:, 0], layout_kps[:, 1] + region_mask = (kp_x >= x_min) & (kp_x <= x_max) & (kp_y >= y_min) & (kp_y <= y_max) + active_layout_mask[region_mask] = False + + print(f"剩余活动关键点: {active_layout_mask.sum()}") + else: + # 如果在所有尺度下都找不到好的匹配,则结束搜索 + print("在所有尺度下均未找到新的匹配实例,搜索结束。") break - - inlier_mask = mask.ravel().astype(bool) - - # 区域屏蔽逻辑 - inlier_layout_kps = dst_pts[inlier_mask] - x_min, y_min = inlier_layout_kps.min(axis=0) - x_max, y_max = inlier_layout_kps.max(axis=0) - - instance = {'x': int(x_min), 'y': int(y_min), 'width': int(x_max - x_min), 'height': int(y_max - y_min), 'homography': H} - found_instances.append(instance) - - kp_x, kp_y = layout_kps[:, 0], layout_kps[:, 1] - region_mask = (kp_x >= x_min) & (kp_x <= x_max) & (kp_y >= y_min) & (kp_y <= y_max) - active_layout_mask[region_mask] = False - - print(f"找到实例,内点数: {mask.sum()}。剩余活动关键点: {active_layout_mask.sum()}") return found_instances -def visualize_matches(layout_path, template_path, bboxes, output_path): + +def visualize_matches(layout_path, bboxes, output_path): layout_img = cv2.imread(layout_path) for i, bbox in enumerate(bboxes): x, y, w, h = bbox['x'], bbox['y'], bbox['width'], bbox['height'] @@ -83,8 +188,9 @@ def visualize_matches(layout_path, template_path, bboxes, output_path): cv2.imwrite(output_path, layout_img) print(f"可视化结果已保存至: {output_path}") + if __name__ == "__main__": - parser = argparse.ArgumentParser(description="使用 RoRD 进行模板匹配") + parser = argparse.ArgumentParser(description="使用 RoRD 进行多尺度模板匹配") parser.add_argument('--model_path', type=str, default=config.MODEL_PATH) parser.add_argument('--layout', type=str, required=True) parser.add_argument('--template', type=str, required=True) @@ -96,13 +202,14 @@ if __name__ == "__main__": model.load_state_dict(torch.load(args.model_path)) model.eval() - layout_tensor = transform(Image.open(args.layout).convert('L')).unsqueeze(0).cuda() - template_tensor = transform(Image.open(args.template).convert('L')).unsqueeze(0).cuda() - - detected_bboxes = match_template_to_layout(model, layout_tensor, template_tensor) + layout_image = Image.open(args.layout).convert('L') + template_image = Image.open(args.template).convert('L') + + detected_bboxes = match_template_multiscale(model, layout_image, template_image, transform) + print("\n检测到的边界框:") for bbox in detected_bboxes: print(bbox) if args.output: - visualize_matches(args.layout, args.template, detected_bboxes, args.output) \ No newline at end of file + visualize_matches(args.layout, detected_bboxes, args.output) \ No newline at end of file diff --git a/train.py b/train.py index 73c3e64..e9f5d59 100644 --- a/train.py +++ b/train.py @@ -15,13 +15,14 @@ import config from models.rord import RoRD from utils.data_utils import get_transform -# --- 训练专用数据集类 --- +# --- (已修改) 训练专用数据集类 --- class ICLayoutTrainingDataset(Dataset): - def __init__(self, image_dir, patch_size=256, transform=None): + def __init__(self, image_dir, patch_size=256, transform=None, scale_range=(1.0, 1.0)): self.image_dir = image_dir self.image_paths = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith('.png')] self.patch_size = patch_size self.transform = transform + self.scale_range = scale_range # 新增尺度范围参数 def __len__(self): return len(self.image_paths) @@ -29,14 +30,30 @@ class ICLayoutTrainingDataset(Dataset): def __getitem__(self, index): img_path = self.image_paths[index] image = Image.open(img_path).convert('L') - W, H = image.size - x = np.random.randint(0, W - self.patch_size + 1) - y = np.random.randint(0, H - self.patch_size + 1) - patch = image.crop((x, y, x + self.patch_size, y + self.patch_size)) + + # --- 新增:尺度抖动数据增强 --- + # 1. 随机选择一个缩放比例 + scale = np.random.uniform(self.scale_range[0], self.scale_range[1]) + # 2. 根据缩放比例计算需要从原图裁剪的尺寸 + crop_size = int(self.patch_size / scale) + + # 确保裁剪尺寸不超过图像边界 + if crop_size > min(W, H): + crop_size = min(W, H) + + # 3. 随机裁剪 + x = np.random.randint(0, W - crop_size + 1) + y = np.random.randint(0, H - crop_size + 1) + patch = image.crop((x, y, x + crop_size, y + crop_size)) + + # 4. 将裁剪出的图像块缩放回标准的 patch_size + patch = patch.resize((self.patch_size, self.patch_size), Image.LANCZOS) + # --- 尺度抖动结束 --- + patch_np = np.array(patch) - # 实现8个方向的离散几何变换 + # 实现8个方向的离散几何变换 (这部分逻辑不变) theta_deg = np.random.choice([0, 90, 180, 270]) is_mirrored = np.random.choice([True, False]) cx, cy = self.patch_size / 2.0, self.patch_size / 2.0 @@ -59,10 +76,10 @@ class ICLayoutTrainingDataset(Dataset): patch = self.transform(patch) transformed_patch = self.transform(transformed_patch) - H_tensor = torch.from_numpy(H[:2, :]).float() # 通常损失函数需要2x3的仿射矩阵 + H_tensor = torch.from_numpy(H[:2, :]).float() return patch, transformed_patch, H_tensor -# --- 特征图变换与损失函数 --- +# --- 特征图变换与损失函数 (无变动) --- def warp_feature_map(feature_map, H_inv): B, C, H, W = feature_map.size() grid = F.affine_grid(H_inv, feature_map.size(), align_corners=False).to(feature_map.device) @@ -77,34 +94,29 @@ def compute_detection_loss(det_original, det_rotated, H): def compute_description_loss(desc_original, desc_rotated, H, margin=1.0): B, C, H_feat, W_feat = desc_original.size() num_samples = 100 - - # 随机采样锚点坐标 - coords = torch.rand(B, num_samples, 2, device=desc_original.device) * 2 - 1 # [-1, 1] - - # 提取锚点描述子 + coords = torch.rand(B, num_samples, 2, device=desc_original.device) * 2 - 1 anchor = F.grid_sample(desc_original, coords.unsqueeze(1), align_corners=False).squeeze(2).transpose(1, 2) - - # 计算正样本坐标 coords_hom = torch.cat([coords, torch.ones(B, num_samples, 1, device=coords.device)], dim=2) M_inv = torch.inverse(torch.cat([H, torch.tensor([0.0, 0.0, 1.0]).view(1, 1, 3).repeat(H.shape[0], 1, 1)], dim=1)) coords_transformed = (coords_hom @ M_inv.transpose(1, 2))[:, :, :2] - - # 提取正样本描述子 positive = F.grid_sample(desc_rotated, coords_transformed.unsqueeze(1), align_corners=False).squeeze(2).transpose(1, 2) - - # 随机采样负样本 neg_coords = torch.rand(B, num_samples, 2, device=desc_original.device) * 2 - 1 negative = F.grid_sample(desc_rotated, neg_coords.unsqueeze(1), align_corners=False).squeeze(2).transpose(1, 2) - triplet_loss = nn.TripletMarginLoss(margin=margin, p=2) return triplet_loss(anchor, positive, negative) -# --- 主函数与命令行接口 --- +# --- (已修改) 主函数与命令行接口 --- def main(args): print("--- 开始训练 RoRD 模型 ---") print(f"训练参数: Epochs={args.epochs}, Batch Size={args.batch_size}, LR={args.lr}") transform = get_transform() - dataset = ICLayoutTrainingDataset(args.data_dir, patch_size=config.PATCH_SIZE, transform=transform) + # 在数据集初始化时传入尺度抖动范围 + dataset = ICLayoutTrainingDataset( + args.data_dir, + patch_size=config.PATCH_SIZE, + transform=transform, + scale_range=config.SCALE_JITTER_RANGE + ) dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4) model = RoRD().cuda() optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) @@ -116,14 +128,11 @@ def main(args): original, rotated, H = original.cuda(), rotated.cuda(), H.cuda() det_original, desc_original = model(original) det_rotated, desc_rotated = model(rotated) - loss = compute_detection_loss(det_original, det_rotated, H) + compute_description_loss(desc_original, desc_rotated, H) - optimizer.zero_grad() loss.backward() optimizer.step() total_loss_val += loss.item() - print(f"--- Epoch {epoch+1} 完成, 平均 Loss: {total_loss_val / len(dataloader):.4f} ---") if not os.path.exists(args.save_dir):