添加数据增强方案以及扩散生成模型的想法
This commit is contained in:
@@ -17,6 +17,53 @@
|
||||
|
||||
- 备注:本次测试在 CPU 上进行,`gpu_mem_mb` 始终为 0。
|
||||
|
||||
## 注意力 A/B(CPU,resnet34,512×512,runs=10,places=backbone_high+desc_head)
|
||||
|
||||
| Attention | Single Mean ± Std | FPN Mean ± Std |
|
||||
|-----------|-------------------:|----------------:|
|
||||
| none | 97.57 ± 0.55 | 124.57 ± 0.48 |
|
||||
| se | 101.48 ± 2.13 | 123.12 ± 0.50 |
|
||||
| cbam | 119.80 ± 2.38 | 123.11 ± 0.71 |
|
||||
|
||||
观察:
|
||||
- 单尺度路径对注意力类型更敏感,CBAM 开销相对更高,SE 较轻;
|
||||
- FPN 路径耗时在本次设置下差异很小(可能因注意力仅在 `backbone_high/desc_head`,且 FPN 头部计算占比较高)。
|
||||
|
||||
复现实验:
|
||||
```zsh
|
||||
PYTHONPATH=. uv run python tests/benchmark_attention.py \
|
||||
--device cpu --image-size 512 --runs 10 \
|
||||
--backbone resnet34 --places backbone_high desc_head
|
||||
```
|
||||
|
||||
## 三维基准(Backbone × Attention × Single/FPN)
|
||||
|
||||
环境:CPU,输入 1×3×512×512,重复 3 次,places=backbone_high,desc_head。
|
||||
|
||||
| Backbone | Attention | Single Mean ± Std (ms) | FPN Mean ± Std (ms) |
|
||||
|------------------|-----------|-----------------------:|--------------------:|
|
||||
| vgg16 | none | 351.65 ± 1.88 | 719.33 ± 3.95 |
|
||||
| vgg16 | se | 349.76 ± 2.00 | 721.41 ± 2.74 |
|
||||
| vgg16 | cbam | 354.45 ± 1.49 | 744.76 ± 29.32 |
|
||||
| resnet34 | none | 90.99 ± 0.41 | 117.22 ± 0.41 |
|
||||
| resnet34 | se | 90.78 ± 0.47 | 115.91 ± 1.31 |
|
||||
| resnet34 | cbam | 96.50 ± 3.17 | 111.09 ± 1.01 |
|
||||
| efficientnet_b0 | none | 40.45 ± 1.53 | 127.30 ± 0.09 |
|
||||
| efficientnet_b0 | se | 46.48 ± 0.26 | 142.35 ± 6.61 |
|
||||
| efficientnet_b0 | cbam | 47.11 ± 0.47 | 150.99 ± 12.47 |
|
||||
|
||||
复现实验:
|
||||
|
||||
```zsh
|
||||
PYTHONPATH=. uv run python tests/benchmark_grid.py \
|
||||
--device cpu --image-size 512 --runs 3 \
|
||||
--backbones vgg16 resnet34 efficientnet_b0 \
|
||||
--attentions none se cbam \
|
||||
--places backbone_high desc_head
|
||||
```
|
||||
|
||||
运行会同时输出控制台摘要并保存 JSON:`benchmark_grid.json`。
|
||||
|
||||
## 观察与解读
|
||||
- vgg16 明显最慢,FPN 额外的横向/上采样代价在 CPU 上更突出(>2×)。
|
||||
- resnet34 在单尺度上显著快于 vgg16,FPN 增幅较小(约 +25%)。
|
||||
|
||||
Reference in New Issue
Block a user