From 030b9f6804c7af84f9e052d332bf06259488d738 Mon Sep 17 00:00:00 2001 From: Jiao77 Date: Mon, 20 Oct 2025 23:23:42 +0800 Subject: [PATCH] Incremental report. --- docs/reports/Increment_Report_2025-10-20.md | 104 ++++++++++++++++++++ 1 file changed, 104 insertions(+) diff --git a/docs/reports/Increment_Report_2025-10-20.md b/docs/reports/Increment_Report_2025-10-20.md index 00a9dfd..8a5c38d 100644 --- a/docs/reports/Increment_Report_2025-10-20.md +++ b/docs/reports/Increment_Report_2025-10-20.md @@ -59,6 +59,110 @@ > 说明:完整复现命令与更全面的实验汇总,见 `docs/description/Performance_Benchmark.md`。 +### 3.4 三维基准(Backbone × Attention × Single/FPN,CPU,512×512,runs=3) + +为便于横向比较,纳入完整三维基准表: + +| Backbone | Attention | Single Mean ± Std (ms) | FPN Mean ± Std (ms) | +|------------------|-----------|-----------------------:|--------------------:| +| vgg16 | none | 351.65 ± 1.88 | 719.33 ± 3.95 | +| vgg16 | se | 349.76 ± 2.00 | 721.41 ± 2.74 | +| vgg16 | cbam | 354.45 ± 1.49 | 744.76 ± 29.32 | +| resnet34 | none | 90.99 ± 0.41 | 117.22 ± 0.41 | +| resnet34 | se | 90.78 ± 0.47 | 115.91 ± 1.31 | +| resnet34 | cbam | 96.50 ± 3.17 | 111.09 ± 1.01 | +| efficientnet_b0 | none | 40.45 ± 1.53 | 127.30 ± 0.09 | +| efficientnet_b0 | se | 46.48 ± 0.26 | 142.35 ± 6.61 | +| efficientnet_b0 | cbam | 47.11 ± 0.47 | 150.99 ± 12.47 | + +要点:ResNet34 在 CPU 场景下具备最稳健的“速度—FPN 额外开销”折中;EfficientNet-B0 单尺度非常快,但 FPN 相对代价显著。 + +### 3.5 GPU 细分(含注意力,A100,512×512,runs=5) + +进一步列出 GPU 上不同注意力的耗时细分: + +| Backbone | Attention | Single Mean ± Std (ms) | FPN Mean ± Std (ms) | +|--------------------|-----------|-----------------------:|--------------------:| +| vgg16 | none | 4.53 ± 0.02 | 8.51 ± 0.002 | +| vgg16 | se | 3.80 ± 0.01 | 7.12 ± 0.004 | +| vgg16 | cbam | 3.73 ± 0.02 | 6.95 ± 0.09 | +| resnet34 | none | 2.32 ± 0.04 | 2.73 ± 0.007 | +| resnet34 | se | 2.33 ± 0.01 | 2.73 ± 0.004 | +| resnet34 | cbam | 2.46 ± 0.04 | 2.74 ± 0.004 | +| efficientnet_b0 | none | 3.69 ± 0.07 | 4.38 ± 0.02 | +| efficientnet_b0 | se | 3.76 ± 0.06 | 4.37 ± 0.03 | +| efficientnet_b0 | cbam | 3.99 ± 0.08 | 4.41 ± 0.02 | + +要点:GPU 环境下注意力对耗时的影响较小;ResNet34 仍是单尺度与 FPN 的最佳选择,FPN 额外开销约 +18%。 + +### 3.6 对标方法与 JSON 结构(方法论补充) + +- 速度提升(speedup_percent):$(\text{SW\_time} - \text{FPN\_time}) / \text{SW\_time} \times 100\%$。 +- 显存节省(memory_saving_percent):$(\text{SW\_mem} - \text{FPN\_mem}) / \text{SW\_mem} \times 100\%$。 +- 精度保障:匹配数不显著下降(例如 FPN_matches ≥ SW_matches × 0.95)。 + +脚本输出的 JSON 示例结构(摘要): + +```json +{ + "timestamp": "2025-10-20 14:30:45", + "config": "configs/base_config.yaml", + "model_path": "path/to/model_final.pth", + "layout_path": "test_data/layout.png", + "template_path": "test_data/template.png", + "device": "cuda:0", + "fpn": { + "method": "FPN", + "mean_time_ms": 245.32, + "std_time_ms": 12.45, + "gpu_memory_mb": 1024.5, + "num_runs": 5 + }, + "sliding_window": { + "method": "Sliding Window", + "mean_time_ms": 352.18, + "std_time_ms": 18.67 + }, + "comparison": { + "speedup_percent": 30.35, + "memory_saving_percent": 21.14, + "fpn_faster": true, + "meets_speedup_target": true, + "meets_memory_target": true + } +} +``` + +### 3.7 复现实验命令(便携) + +CPU 注意力对比: + +```zsh +PYTHONPATH=. uv run python tests/benchmark_attention.py \ + --device cpu --image-size 512 --runs 10 \ + --backbone resnet34 --places backbone_high desc_head +``` + +三维基准: + +```zsh +PYTHONPATH=. uv run python tests/benchmark_grid.py \ + --device cpu --image-size 512 --runs 3 \ + --backbones vgg16 resnet34 efficientnet_b0 \ + --attentions none se cbam \ + --places backbone_high desc_head +``` + +GPU 三维基准(如可用): + +```zsh +PYTHONPATH=. uv run python tests/benchmark_grid.py \ + --device cuda --image-size 512 --runs 5 \ + --backbones vgg16 resnet34 efficientnet_b0 \ + --attentions none se cbam \ + --places backbone_high +``` + --- ## 4. 数据与训练建议(Actionable Recommendations)