Files
RoRD-Layout-Recognation/models/rord.py

49 lines
1.5 KiB
Python
Raw Normal View History

2025-06-08 15:38:56 +08:00
# models/rord.py
2025-06-07 23:45:32 +08:00
import torch
import torch.nn as nn
from torchvision import models
class RoRD(nn.Module):
def __init__(self):
2025-06-08 15:38:56 +08:00
"""
修复后的 RoRD 模型
- 实现了共享骨干网络以提高计算效率和减少内存占用
- 移除了冗余的 descriptor_head_vanilla
"""
2025-06-07 23:45:32 +08:00
super(RoRD, self).__init__()
2025-06-09 00:55:28 +08:00
vgg16_features = models.vgg16(pretrained=False).features
2025-06-08 15:38:56 +08:00
# 共享骨干网络
self.slice1 = vgg16_features[:23] # 到 relu4_3
self.slice2 = vgg16_features[23:30] # 从 relu4_3 到 relu5_3
# 检测头
2025-06-07 23:45:32 +08:00
self.detection_head = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 1, kernel_size=1),
nn.Sigmoid()
)
2025-06-08 15:38:56 +08:00
# 描述子头
self.descriptor_head = nn.Sequential(
2025-06-07 23:45:32 +08:00
nn.Conv2d(512, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=1),
nn.InstanceNorm2d(128)
)
def forward(self, x):
2025-06-08 15:38:56 +08:00
# 共享特征提取
features_shared = self.slice1(x)
# 描述子分支
descriptors = self.descriptor_head(features_shared)
2025-06-07 23:45:32 +08:00
2025-06-08 15:38:56 +08:00
# 检测器分支
features_det = self.slice2(features_shared)
detection_map = self.detection_head(features_det)
2025-06-07 23:45:32 +08:00
2025-06-08 15:38:56 +08:00
return detection_map, descriptors