Files
RoRD-Layout-Recognation/models/rord.py

115 lines
4.6 KiB
Python
Raw Normal View History

2025-06-08 15:38:56 +08:00
# models/rord.py
2025-06-07 23:45:32 +08:00
import torch
import torch.nn as nn
2025-09-25 22:05:39 +08:00
import torch.nn.functional as F
2025-06-07 23:45:32 +08:00
from torchvision import models
class RoRD(nn.Module):
2025-09-25 22:05:39 +08:00
def __init__(self, fpn_out_channels: int = 256, fpn_levels=(2, 3, 4)):
2025-06-08 15:38:56 +08:00
"""
修复后的 RoRD 模型
- 实现了共享骨干网络以提高计算效率和减少内存占用
2025-06-30 03:27:18 +08:00
- 确保检测头和描述子头使用相同尺寸的特征图
2025-09-25 22:05:39 +08:00
- 新增可选FPN 推理路径提供多尺度特征用于高效匹配
2025-06-08 15:38:56 +08:00
"""
2025-06-07 23:45:32 +08:00
super(RoRD, self).__init__()
2025-06-09 00:55:28 +08:00
vgg16_features = models.vgg16(pretrained=False).features
2025-09-25 22:05:39 +08:00
# VGG16 特征各阶段索引conv & relu 层序列)
# relu2_2 索引 8relu3_3 索引 15relu4_3 索引 22
self.features = vgg16_features
# 共享骨干(向后兼容单尺度路径,使用到 relu4_3
2025-07-20 15:37:42 +08:00
self.backbone = nn.Sequential(*list(vgg16_features.children())[:23])
2025-06-08 15:38:56 +08:00
# 检测头
2025-06-07 23:45:32 +08:00
self.detection_head = nn.Sequential(
nn.Conv2d(512, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
2025-06-30 03:27:18 +08:00
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 1, kernel_size=1),
2025-06-07 23:45:32 +08:00
nn.Sigmoid()
)
2025-06-08 15:38:56 +08:00
# 描述子头
self.descriptor_head = nn.Sequential(
2025-06-07 23:45:32 +08:00
nn.Conv2d(512, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
2025-06-30 03:27:18 +08:00
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=1),
2025-06-07 23:45:32 +08:00
nn.InstanceNorm2d(128)
)
2025-09-25 22:05:39 +08:00
# --- FPN 组件(用于可选多尺度推理) ---
self.fpn_out_channels = fpn_out_channels
self.fpn_levels = tuple(sorted(set(fpn_levels))) # e.g., (2,3,4)
# 横向连接 1x1 将 C2(128)/C3(256)/C4(512) 对齐到相同通道数
self.lateral_c2 = nn.Conv2d(128, fpn_out_channels, kernel_size=1)
self.lateral_c3 = nn.Conv2d(256, fpn_out_channels, kernel_size=1)
self.lateral_c4 = nn.Conv2d(512, fpn_out_channels, kernel_size=1)
# 平滑 3x3 conv
self.smooth_p2 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1)
self.smooth_p3 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1)
self.smooth_p4 = nn.Conv2d(fpn_out_channels, fpn_out_channels, kernel_size=3, padding=1)
# 共享的 FPN 检测/描述子头(输入通道为 fpn_out_channels
self.det_head_fpn = nn.Sequential(
nn.Conv2d(fpn_out_channels, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 1, kernel_size=1),
nn.Sigmoid(),
)
self.desc_head_fpn = nn.Sequential(
nn.Conv2d(fpn_out_channels, 128, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=1),
nn.InstanceNorm2d(128),
)
def forward(self, x: torch.Tensor, return_pyramid: bool = False):
if not return_pyramid:
# 向后兼容的单尺度路径relu4_3
features = self.backbone(x)
detection_map = self.detection_head(features)
descriptors = self.descriptor_head(features)
return detection_map, descriptors
# --- FPN 路径:提取 C2/C3/C4 ---
c2, c3, c4 = self._extract_c234(x)
p4 = self.lateral_c4(c4)
p3 = self.lateral_c3(c3) + F.interpolate(p4, size=c3.shape[-2:], mode="nearest")
p2 = self.lateral_c2(c2) + F.interpolate(p3, size=c2.shape[-2:], mode="nearest")
p4 = self.smooth_p4(p4)
p3 = self.smooth_p3(p3)
p2 = self.smooth_p2(p2)
pyramid = {}
if 4 in self.fpn_levels:
pyramid["P4"] = (self.det_head_fpn(p4), self.desc_head_fpn(p4), 8)
if 3 in self.fpn_levels:
pyramid["P3"] = (self.det_head_fpn(p3), self.desc_head_fpn(p3), 4)
if 2 in self.fpn_levels:
pyramid["P2"] = (self.det_head_fpn(p2), self.desc_head_fpn(p2), 2)
return pyramid
def _extract_c234(self, x: torch.Tensor):
"""提取 VGG 中间层特征C2(relU2_2), C3(relu3_3), C4(relu4_3)."""
c2 = c3 = c4 = None
for i, layer in enumerate(self.features):
x = layer(x)
if i == 8: # relu2_2
c2 = x
elif i == 15: # relu3_3
c3 = x
elif i == 22: # relu4_3
c4 = x
break
assert c2 is not None and c3 is not None and c4 is not None
return c2, c3, c4