Files
RoRD-Layout-Recognation/tools/diffusion/train_layout_diffusion.py

38 lines
1.6 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
"""
Train a diffusion model for layout patch generation (skeleton).
Planned: fine-tune Stable Diffusion (or Latent Diffusion) with optional ControlNet edge/skeleton conditions.
Dependencies to consider: diffusers, transformers, accelerate, torch, torchvision, opencv-python.
Current status: CLI skeleton and TODOs only.
"""
from __future__ import annotations
import argparse
def main() -> None:
parser = argparse.ArgumentParser(description="Train diffusion model for layout patches (skeleton)")
parser.add_argument("--data_dir", type=str, required=True, help="Prepared dataset root (images/ + conditions/)")
parser.add_argument("--output_dir", type=str, required=True, help="Checkpoint output directory")
parser.add_argument("--image_size", type=int, default=256)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--lr", type=float, default=1e-4)
parser.add_argument("--max_steps", type=int, default=100000)
parser.add_argument("--use_controlnet", action="store_true", help="Train with ControlNet conditioning")
parser.add_argument("--condition_types", type=str, nargs="*", default=["edge"], help="e.g., edge skeleton dist")
args = parser.parse_args()
# TODO: implement dataset/dataloader (images and optional conditions)
# TODO: load base pipeline (Stable Diffusion or Latent Diffusion) and optionally ControlNet
# TODO: set up optimizer, LR schedule, EMA, gradient accumulation, and run training loop
# TODO: save periodic checkpoints to output_dir
print("[TODO] Implement diffusion training loop and checkpoints.")
if __name__ == "__main__":
main()