import faiss import numpy as np import torch from models.rotation_cnn import RotationInvariantNet, get_rotational_features from data_units import layout_to_tensor, tile_layout def main(): # 配置参数(需根据实际调整) block_size = 64 # 分块尺寸 target_module_path = "target.png" large_layout_path = "layout_large.png" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = RotationInvariantNet().to(device) model.load_state_dict(torch.load("rotation_cnn.pth")) model.eval() # 预处理目标模块与大版图 target_tensor = layout_to_tensor(target_module_path, (block_size, block_size)) target_feat = get_rotational_features(model, torch.tensor(target_tensor).to(device)) large_layout = layout_to_tensor(large_layout_path) tiles = tile_layout(large_layout) # 构建特征索引(使用Faiss加速) index = faiss.IndexFlatL2(64) # 特征维度由模型决定 features_db = [] for (x, y, tile) in tiles: feat = get_rotational_features(model, torch.tensor(tile).to(device)) features_db.append(feat) index.add(np.stack(features_db)) # 检索相似区域 D, I = index.search(target_feat[np.newaxis, :], k=10) for idx in I[0]: x, y, _ = tiles[idx] # 计算最佳匹配角度的显式计算 min_angle, min_dist = 90, float('inf') target_vec = target_feat feat = features_db[idx] for a in [0, 1, 2, 3]: # 代表0°、90°、180°、270° rotated_feat = np.rot90(feat.reshape(block_size, block_size), k=a) dist = np.linalg.norm(target_vec - rotated_feat.flatten()) if dist < min_dist: min_dist, min_angle = dist, a * 90 print(f"坐标({x},{y}), 最佳旋转方向{min_angle}度,距离: {min_dist}") if __name__ == "__main__": main()