Files
LayoutMatch/inference.py

51 lines
1.9 KiB
Python
Raw Normal View History

2025-03-25 01:42:26 +08:00
import faiss
import numpy as np
import torch
from models.rotation_cnn import RotationInvariantNet, get_rotational_features
from data_units import layout_to_tensor, tile_layout
2025-03-25 01:42:26 +08:00
def main():
# 配置参数(需根据实际调整)
block_size = 64 # 分块尺寸
target_module_path = "target.png"
large_layout_path = "layout_large.png"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = RotationInvariantNet().to(device)
model.load_state_dict(torch.load("rotation_cnn.pth"))
model.eval()
# 预处理目标模块与大版图
target_tensor = layout_to_tensor(target_module_path, (block_size, block_size))
target_feat = get_rotational_features(model, torch.tensor(target_tensor).to(device))
large_layout = layout_to_tensor(large_layout_path)
tiles = tile_layout(large_layout)
# 构建特征索引使用Faiss加速
index = faiss.IndexFlatL2(64) # 特征维度由模型决定
features_db = []
for (x, y, tile) in tiles:
2025-03-25 01:42:26 +08:00
feat = get_rotational_features(model, torch.tensor(tile).to(device))
features_db.append(feat)
index.add(np.stack(features_db))
# 检索相似区域
D, I = index.search(target_feat[np.newaxis, :], k=10)
2025-03-25 01:42:26 +08:00
for idx in I[0]:
x, y, _ = tiles[idx]
# 计算最佳匹配角度的显式计算
min_angle, min_dist = 90, float('inf')
target_vec = target_feat
feat = features_db[idx]
for a in [0, 1, 2, 3]: # 代表0°、90°、180°、270°
rotated_feat = np.rot90(feat.reshape(block_size, block_size), k=a)
dist = np.linalg.norm(target_vec - rotated_feat.flatten())
if dist < min_dist:
min_dist, min_angle = dist, a * 90
print(f"坐标({x},{y}), 最佳旋转方向{min_angle}度,距离: {min_dist}")
2025-03-25 01:42:26 +08:00
if __name__ == "__main__":
main()