Files
LayoutMatch/data_units.py

31 lines
1.5 KiB
Python
Raw Normal View History

2025-03-25 01:42:26 +08:00
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
def layout_transforms():
"""定义数据增强和预处理"""
return transforms.Compose([
transforms.Resize((256, 256)), # 调整尺寸到固定大小
transforms.RandomRotation(30), # 随机旋转(增强方向不变性)
transforms.ColorJitter(brightness=0.2, contrast=0.2), # 彩色抖动(如果使用图像数据)
transforms.ToTensor(), # 转换为张量
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # 标准化如ImageNet均值和方差
])
def layout_to_tensor(layout_path, target_size=(256, 256)):
"""将版图转换为标准化张量"""
# 实际应用中可能需要解析GDSII/LEF格式此处简化处理
img = Image.open(layout_path).convert('L') # 灰度化
img = img.resize(target_size, resample=Image.BILINEAR)
return np.array(img) / 255.0 # 归一化到[0,1]
def tile_layout(large_layout, block_size=64, overlap_ratio=0.5):
2025-03-25 01:42:26 +08:00
"""将大版图分割为小块(滑动窗口方式)"""
height, width = large_layout.shape
stride = int(block_size * (1 - overlap_ratio)) # 步长设置重叠区域
2025-03-25 01:42:26 +08:00
tiles = []
for y in range(0, height - block_size +1, stride):
for x in range(0, width - block_size +1, stride):
tile = large_layout[y:y+block_size, x:x+block_size]
tiles.append((x, y, tile))
return tiles